29 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Genesis of the Western Samoa seamount province: age, geochemical fingerprint and tectonics

    No full text
    The Samoan volcanic lineament has many features that are consistent with a plume-driven hotspot model, including the currently active submarine volcano Vailulu'u that anchors the eastern extremity. Proximity to the northern end of the Tonga trench, and the presence of voluminous young volcanism on what should be the oldest (∼5 my) western island (Savai'i) has induced controversy regarding a simple plume/hotspot model. In an effort to further constrain this debate, we have carried out geochronological, geochemical and isotopic studies of dredge basalts from four seamounts and submarine banks that extend the Samoan lineament 1300 km further west from Savai'i. 40Ar/39Ar plateau ages from Combe and Alexa Banks (11.1 my—940 km, and 23.4 my—1690 km from Vailulu'u, respectively) fit a Pacific age progression very well. The oldest volcanism (9.8 my) on Lalla Rookh (725 km from Vailulu'u) also fits this age progression, but a new age is much younger (1.6 my). Isotopically, these three seamounts, along with Pasco Bank (590 km from Vailulu'u), all lie within, or closely along extensions of, the Sr–Nd–Pb fields for shield basalts from the Eastern Samoan Province (Savai'i to Vailulu'u); this clearly establishes a Samoan pedigree for this western extension of the Samoan hotspot chain, and pushes the inception of Samoan volcanism back to at least 23 my. From geodetic reconstructions of the Fiji–Tonga–Samoa region, we show that the northern terminus of the Tonga arc was too far west of the Samoa hotspot up until 1–2 my ago to have been a factor in its volcanism. Young rejuvenated volcanism on Lalla Rookh and Savai'i may be related to the rapid eastward encroachment of the Trench corner. The Vitiaz Lineament, previously thought to mark a proto-Tongan subduction zone, was more likely created by the eastward propagation of the tear in the Pacific Plate at the northern end of the arc

    Radiation hydrodynamics with backscatter and beam spray in gas filled hohlraum experiments at the National Ignition Facility

    No full text
    Several experiments using either CO2_{2} or propane gas filled halfraums [i.e. hohlraums with a single laser entry hole (LEH)] have been shot at the National Ignition Facility (NIF) in a joint Los Alamos/Livermore collaboration. The experiments have been modeled by the Lasnex code. The possibility of beam spray due to filamentation of the incident laser beam is assessed through simulations which parametrically decrease the f-number of the beam at times of high intensity. The uncertainty in heat transport is evaluated through parametric variations in the electron thermal flux limit (fe). Each calculation in the resulting two parameter set is post-processed to simulate outputs which can be compared with Dante detector results for the soft X-ray flux through the LEH, and gated, framed images of hard X-rays (FXI) through the hohlraum side walls. Simulations which well match the data for both gases indicate that the laser energy is penetrating the gas filled hohlraum even towards the end of the pulse. This suggests that the gas fill is useful in keeping the hohlraum open to laser energy throughout the pulse
    corecore